

Virtual VuFind Summit 2020
September 29-October 1, 2020

VuFind and Koha integration

A comparison of three generations of connectivity approaches

VuFind and Koha integration

A comparison of three generations of connectivity approaches

Parthasarathi Mukhopadhyay, Kalyani University, WB, IndiaParthasarathi Mukhopadhyay, Kalyani University, WB, India

Union Catalogue

a list of the combined holdings of several libraries.

 (Classical definition)

a union catalogue is union files of the stock of several libraries merged
into a central database to allow end users to search an array of library
catalogues through a single-point access interface.

 (Modern view)

a well-developed, central system permit improved search functionality,
payment mechanisms, direct user services and integration with journals
databases and full-text along with OPAC functionalities.

– (Futuristic view)

HEI in India : At a Glance
● There are 993 Universities, 39931 Colleges and 10725 Stand Alone

Institutions;

● 394 Universities are located in rural areas;

● 16 Universities are exclusively for women;

● 1 Central Open University, 14 State Open Universities and 1State Private
Open University, there are 110 Dual mode Universities (the maximum (13)
of them are located in Tamil Nadu)

● There are 548 General, 142 Technical, 63 Agriculture & Allied, 58
Medical, 23 Law, 13 Sanskrit and 9 Language Universities and rest 106
Universities are of other categories.

● Use of Integrated Library Systems (ILSs) are heterogeneous;

● Union catalogues (a few only) are far from the modern views of union
catalogue.

AISHE Report 2018-19 (the latest one) @
http://aishe.nic.in/aishe/viewDocument.action?documentId=262

ILSs in India - Categorization

Koha (ver 16.x to 20.x) and SOUL 2.x are now two mostly used ILSs in Indian HEIs Koha (ver 16.x to 20.x) and SOUL 2.x are now two mostly used ILSs in Indian HEIs

Is it possible to develop a framework for Union Catalogue of academic
libraries in India by using Koha ILS at the backend and VuFind discovery
system in the front?

How and to what extent is it feasible to fuse OPAC functionalities (such
as real-time item availability status, holds placement, holds preference
settings and so on) in a union catalogue framework?

A Virtual Union catalogue for Academic Libraries in IndiaA Virtual Union catalogue for Academic Libraries in India

Backdrop

till date most of the national-level and global-
scale union catalogues support only finding
function of a catalogue and
– neglecting the other OPAC functionalities such as

● real-time availability status;
● holds placement, renew, article request etc;
● use of ILSs credentials for authentication (SSO); and
● extended search features like full-text search, faceted

navigation etc.
● FRBRized display/grouping of resources

Union Catalouge of University Libraries in India: IndCat
(indcat.inflibnet.ac.in)

Effective dedup
ILL request form

Search refinements

Effective dedup
ILL request form

Search refinements

Union Catalouge of University Libraries in India: IndCat

● No real-time item-level status

● No OPAC functionalities

● No faceted navigation
(only search refinements)

● No FRBRized display
(all editions of a work are not
in one place)

● No ILS based authentication

● No real-time item-level status

● No OPAC functionalities

● No faceted navigation
(only search refinements)

● No FRBRized display
(all editions of a work are not
in one place)

● No ILS based authentication

National Union Catalouge: CSIR Knowledge Gateway
(http://knowgate.niscair.res.in)

No
Comments

:(

No
Comments

:(

National Union Catalouge - UK
Library hub discover (erstwhile Copac) - discover.libraryhub.jisc.ac.uk

No real-time item level
Status

No OPAC functionalities

Effective deduplication

No FRBRization

No real-time item level
Status

No OPAC functionalities

Effective deduplication

No FRBRization

Library hub discover (erstwhile Copac)

National Union Catalouge of Australia: Trove - trove.nla.gov.au

Effective Dedup

Marvelous FRBRization

No real-time status

Effective Dedup

Marvelous FRBRization

No real-time status

Global Union Catalouge - WorldCat

No FRBRization in WorldCat No FRBRization in WorldCat

Global Union Catalouge - WorldCat

No real time item-level status… referring to respective OPACsNo real time item-level status… referring to respective OPACs

Facts in a nutshel
● No union catalogue (national or global) is using ILS to design union

catalogue;

● Union catalogues are using Discovery Interface (DI) as single-point
search entity;

● Union catalogues are mostly depending on the process of harvesting to
gather metadata of books (manifestation level) in a central index inside a
discovery service;

● Most of these services implemented Deduplication (gathering all items of
the same manifestation in one place);

● A few of these services have successfully implemented FRBRized display
(gathering all manifestation of the same work in the display);

● But almost all of these union catalogue services failed to implement
minimum OPAC functionalities like real-time item availability status, holds
placement reservation, login with respective library credentials etc.

●
Why? Simple, ILSs don’t talk to DI there…...Why? Simple, ILSs don’t talk to DI there…...

But there are exceptions …….But there are exceptions …….

Ohiolink Classic - olc1.ohiolink.edu

No Dedup and No FRBRization but can produce real-time item-level status in detail pageNo Dedup and No FRBRization but can produce real-time item-level status in detail page

Ohiolink Classic - olc1.ohiolink.edu

ILS-DI

&

OPAL ILS

ILS-DI

&

OPAL ILS

Ohiolink new - http://catalog.ohiolink.edu
Where ILS can talk to DIWhere ILS can talk to DI

Achievements of Ohiolink

RESTful APIs

Sierra ILS

&

Encore Duet discovery interface

Real-time item level status

No other OPAC functionalities

RESTful APIs

Sierra ILS

&

Encore Duet discovery interface

Real-time item level status

No other OPAC functionalities

Finna.fi

De-duplication, FRBRization and real-time status in DI De-duplication, FRBRization and real-time status in DI

Finna.fi

Real-time status in a given holding libraryReal-time status in a given holding library

Finna.fi

Real-time status in a given holding libraryReal-time status in a given holding library

Finna.fi

ILS credentials based login option …. ILS credentials based login option ….

Finna.fi

Basic OPAC functionalities are assured.Basic OPAC functionalities are assured.

Yes!!
It’s

VuFind

Yes!!
It’s

VuFind

Generations of DI to ILS Connectivity

● Most of the union catalogues are discovery services by definition;

● Except a few many of these services are supporting only two objectives of a
catalogue – ‘to find’ & ‘to select’ but not ‘to locate’

– these services refer users to respective OPAC and thereby deviating from
the basic objective of a DI – to provide bibliographic services in ‘single-
window’;

– OPAC functionalities are not there to serve users real-time item-level
status, holds/reservations, profile management,login through ILS
credentials etc

● VuFind may take care of all these OPAC functionalities as DI of a union
catalogue, if configured in a multibackend driver environment to handle
multiple backend ILSs; and

● DI and ILS connectivity approaches in VuFind have improved greatly in recent
times.

–

Generations of ILS Connectivities in VuFind

● DI to ILS connectivity in VuFind may be categorized under three groups
(referred as ‘three generations’ here):

– Generation I : ‘Database Call’ approach (supports real-time item-level
status in DI through database level authentication and refers to
respective ILSs for other OPAC functionalities – like holds placements,
holds cancellation etc); [From beginning]

– Generation II : ‘ILS-DI’ protocol based approach (supports real-time
item-level status in DI through database level authentication and also
provides basic OPAC functionalities within the DI – like holds
placements, profile update etc);

● [Release 3.1 – Sept. 26, 2016]
– Generation III : REST based connectivity (support real-time item-level

status in DI without database level authentication (through OAuth2) and
also provide enhanced OPAC functionalities within the DI – like holds
placements, holds cancellation, profile update, article request etc);

● [VoyagerRestful (Release 2.3 – Aug. 11, 2014; SierraRest (Release
4.1 - Oct. 2, 2017); KohaRest (Release 7.0 – July 20, 2020]

–
–

Test Plan
(look before you leap)

● Objective is to improve present union catalogue scenario in India but first by
developing a pilot study as showcase.

● ILS: Koha 20.05.04 (released on Sept, 22, 2020).

– Reason: the only open source ILS with all three generations of protocol support
(Database call, ILS-DI and REST).

● DI: VuFind 7.0.1 (released on Aug. 31, 2020).

– Reason: the only open source DI with support for all three connectivity approaches
to interact with the backend Koha instances.

● Environment: Multibackend driver to connect each instances of Koha representing
participating libraries.

● Data gathering: Through OAI/PMH from the backend Koha instnaces .

● Test size: 6 university libraries with 1000 MARCXML bibliographic records from each
library (just a prototype)

● Question: What connectivity approaches will be suitable for ‘DI to ILS’ linking?

● Method: Prepare a single central index for all six libraries (maintaining unique id for
each instance of Koha) and test all three approaches in a multibackend driver based
environment.

What is ILS-DI?

“From the standpoint of libraries it would be
– ideal to be able to mix‐and‐match ILS and
– discovery platforms to suit local needs. To
– create such a rich environment the library and
– vendor community will need agreement on
– the specific technical details of how discovery
– and ILS systems are to integrate.”
–

– ‐ Peter Brantley, DLF Executive Director, 23/05/2007
– http://blogs.lib.berkeley.edu/shimenawa.php/2007/05/23/

ils_abstracQon_api

Berkeley Accord, 2008

ILS-DI Standard

https://old.diglib.org/architectures/ilsdi/DLF_ILS_Discovery_1.0.pdf (June 2008)
https://old.diglib.org/architectures/ilsdi/DLF_ILS_Discovery_1.1.pdf (Dec. 2008)

https://old.diglib.org/architectures/ilsdi/DLF_ILS_Discovery_1.0.pdf (June 2008)
https://old.diglib.org/architectures/ilsdi/DLF_ILS_Discovery_1.1.pdf (Dec. 2008)

https://old.diglib.org/architectures/ilsdi/DLF_ILS_Discovery_1.0.pdf
https://old.diglib.org/architectures/ilsdi/DLF_ILS_Discovery_1.1.pdf
https://old.diglib.org/architectures/ilsdi/DLF_ILS_Discovery_1.0.pdf
https://old.diglib.org/architectures/ilsdi/DLF_ILS_Discovery_1.1.pdf

ILS-DI: Twenty five functions under Four Groups
Group I Group II

Group III
Group IV

Koha REST endpoints
https://wiki.koha-community.org/wiki/REST_api_RFCs

Version 1

Still under development

More REST endpoints will emerge

More OPAC functionalities at DI end

Version 1

Still under development

More REST endpoints will emerge

More OPAC functionalities at DI end

56+ endpoints
As on Sept 25, 2K20

56+ endpoints
As on Sept 25, 2K20

Test site
https://koha.lapinkirjasto.fi/api/v1/doc/

OAI/PMH vs ILSDI vs REST

http://localhost:7001/cgi-bin/koha/oai.pl?verb=ListRecords&metadataPrefix=oai_dchttp://localhost:7001/cgi-bin/koha/oai.pl?verb=ListRecords&metadataPrefix=oai_dc

http://localhost:7001/cgi-bin/koha/oai.pl?verb=ListRecords&metadataPrefix=marcxmlhttp://localhost:7001/cgi-bin/koha/oai.pl?verb=ListRecords&metadataPrefix=marcxml

What ILS-DI can do additionally?

http://localhost:7001/cgi-bin/koha/ilsdi.plhttp://localhost:7001/cgi-bin/koha/ilsdi.pl

ILS-DI call in Koha

http://localhost:7001/cgi-bin/koha/ilsdi.pl?service=GetAvailability&id=1+2&id_type=item

ILS-DI call for Patron Information
http://localhost:7001/cgi-bin/koha/ilsdi.pl?service=GetPatronInfo&patron_id=2&show_contact=0&show_loans=1

What REST API can do additionally?

● More and more End points
● Return data in JSON
● Can be more dynamic
● Conditions can be added

http://localhost:2001/api/v1/patrons?city=Kalyanihttp://localhost:2001/api/v1/patrons?city=Kalyani

M
E
T
H
O
D

I
N

B
R
I
E
F

M
E
T
H
O
D

I
N

B
R
I
E
F

koha-plugin-rest-di
koha-plugin-rest-di

Issue 0 : Creation of REST API user with prescribed minimum permission

1 2

3

Issue 1
How to provide Unique id for records from different Koha instances?

Koha Instance 1Koha Instance 1 Koha Instance 2Koha Instance 2 Koha Instance 3Koha Instance 3 Koha Instance 4Koha Instance 4 Koha Instance 5Koha Instance 5

/opac-detail.pl?biblionumber=2/opac-detail.pl?biblionumber=2

collection = "Catalogue - Kalyani University"
institution = "Kalyani University"
building = "Central Library, Kalyani University"
id = 999c, (pattern_map.id_prefix), first
pattern_map.id_prefix.pattern_0 = (.+)=>KohaILS1.$1

collection = "Catalogue - Kalyani University"
institution = "Kalyani University"
building = "Central Library, Kalyani University"
id = 999c, (pattern_map.id_prefix), first
pattern_map.id_prefix.pattern_0 = (.+)=>KohaILS1.$1

collection = "Catalogue - Burdwan University"
institution = "Burdwan University"
building = "Central Library, Burdwan University"
id = 999c, (pattern_map.id_prefix), first
pattern_map.id_prefix.pattern_0 = (.+)=>KohaILS2.$1

collection = "Catalogue - Burdwan University"
institution = "Burdwan University"
building = "Central Library, Burdwan University"
id = 999c, (pattern_map.id_prefix), first
pattern_map.id_prefix.pattern_0 = (.+)=>KohaILS2.$1

Koha Instance 6Koha Instance 6

marc_local_kohails1.properties marc_local_kohails2.properties

solr.indexer.properties =
marc.properties,

marc_local_kohails1.properties

solr.indexer.properties =
marc.properties,

marc_local_kohails1.properties

import-kohails1.properties

solr.indexer.properties =
marc.properties,

marc_local_kohails2.properties

solr.indexer.properties =
marc.properties,

marc_local_kohails2.properties

import-kohails2.properties

./batch-import-marc.sh -p /usr/local/vufind/local/import/import-kohails1.properties KohaILS1

./batch-import-marc.sh -p /usr/local/vufind/local/import/import-kohails2.properties KohaILS2

Indexing / Importing

http://localhost/vufind/Record/KohaILS1.2 http://localhost/vufind/Record/KohaILS2.2

Issue 2: The Multibackend environment
How to handle multiple ILS drivers (Koha, KohaILSDI, KohaRest) at the DI end?

Koha
20.05.04

VuFind
7.0.1

Koha Instance 1Koha Instance 1 KohaILSDI driver 1KohaILSDI driver 1 Multibackend driver
(ILSDI based)

Multibackend driver
(ILSDI based)

[Catalog]
; database host, port, user, password, database
host = 192.168.1.172
port = 3306
username = koha_koharaka_2001
password = *********************
database = koha_koharaka_2001

; Url to the ILS-DI API
url = http://192.168.1.172:1001/cgi-bin/koha/ilsdi.pl

[Catalog]
; database host, port, user, password, database
host = 192.168.1.172
port = 3306
username = koha_koharaka_2001
password = *********************
database = koha_koharaka_2001

; Url to the ILS-DI API
url = http://192.168.1.172:1001/cgi-bin/koha/ilsdi.pl

Issue 2: The Multibackend environment
How to handle multiple ILS drivers (Koha, KohaILSDI, KohaRest) at the DI end?

DIDI

KohaILS1.ini [General]
………

[Drivers]

KohaILS1 = KohaILSDI

KohaILS2 = KohaILSDI

KohaILS3 = KohaILSDI
KohaILS4 = KohaILSDI
KohaILS5 = KohaILSDI
KohaILS6 = KohaILSDI

[Login]

drivers[] = KohaILS1

drivers[] = KohaILS2

drivers[] = KohaILS3
drivers[] = KohaILS4
drivers[] = KohaILS5
drivers[] = KohaILS6

[General]
………

[Drivers]

KohaILS1 = KohaILSDI

KohaILS2 = KohaILSDI

KohaILS3 = KohaILSDI
KohaILS4 = KohaILSDI
KohaILS5 = KohaILSDI
KohaILS6 = KohaILSDI

[Login]

drivers[] = KohaILS1

drivers[] = KohaILS2

drivers[] = KohaILS3
drivers[] = KohaILS4
drivers[] = KohaILS5
drivers[] = KohaILS6

[Catalog]
; database host, port, user, password, database
host = 192.168.1.172
port = 3306
username = koha_koharaka_2002
password = *********************
database = koha_koharaka_2002

; Url to the ILS-DI API
url = http://192.168.1.172:1002/cgi-bin/koha/ilsdi.pl

[Catalog]
; database host, port, user, password, database
host = 192.168.1.172
port = 3306
username = koha_koharaka_2002
password = *********************
database = koha_koharaka_2002

; Url to the ILS-DI API
url = http://192.168.1.172:1002/cgi-bin/koha/ilsdi.pl

KohaILS2.ini

MultiBackend.ini

Koha Instance 1 & 2Koha Instance 1 & 2 KohaRest driver 1 & 2KohaRest driver 1 & 2 Multibackend driver
(REST based)

Multibackend driver
(REST based)

[Catalog]
; The API address without any version such as v1

host = "http://localhost:2001/api"

; OAuth2 client ID
clientId = "bce208b1-4915-445f-bc7d-7caddfbdc590"

; OAuth2 client secret
clientSecret = "b9bde3be-00dc-495a-9768-ce1bff9fe76f"

[Catalog]
; The API address without any version such as v1

host = "http://localhost:2001/api"

; OAuth2 client ID
clientId = "bce208b1-4915-445f-bc7d-7caddfbdc590"

; OAuth2 client secret
clientSecret = "b9bde3be-00dc-495a-9768-ce1bff9fe76f"

Issue 2: The Multibackend environment
How to handle multiple ILS drivers (Koha, KohaILSDI, KohaRest) at the DI end?

DIDI

KohaILS1.ini [General]
………

[Drivers]

KohaILS1 = KohaRest

KohaILS2 = KohaRest

KohaILS3 = KohaRest
KohaILS4 = KohaRest
KohaILS5 = KohaRest
KohaILS6 = KohaRest

[Login]

drivers[] = KohaILS1

drivers[] = KohaILS2

drivers[] = KohaILS3
drivers[] = KohaILS4
drivers[] = KohaILS5
drivers[] = KohaILS6

[General]
………

[Drivers]

KohaILS1 = KohaRest

KohaILS2 = KohaRest

KohaILS3 = KohaRest
KohaILS4 = KohaRest
KohaILS5 = KohaRest
KohaILS6 = KohaRest

[Login]

drivers[] = KohaILS1

drivers[] = KohaILS2

drivers[] = KohaILS3
drivers[] = KohaILS4
drivers[] = KohaILS5
drivers[] = KohaILS6

[Catalog]
; The API address without any version such as v1
host = "http://localhost:2002/api"

; OAuth2 client ID
clientId = "0162cd0a-0f9e-40d3-a43c-04ba8ef9fd36"

; OAuth2 client secret
clientSecret = "605a3dfb-f02b-49b8-9359-c26235f89cef"

[Catalog]
; The API address without any version such as v1
host = "http://localhost:2002/api"

; OAuth2 client ID
clientId = "0162cd0a-0f9e-40d3-a43c-04ba8ef9fd36"

; OAuth2 client secret
clientSecret = "605a3dfb-f02b-49b8-9359-c26235f89cef"

KohaILS2.ini

MultiBackend.ini

Login facility in Multibackend driver mode for all three generationsLogin facility in Multibackend driver mode for all three generations

Users can access DI by using their respective ILSs loginUsers can access DI by using their respective ILSs login

KohaRest based loginKohaRest based login

KohaILSDI based loginKohaILSDI based login

Real-time status from different libraries in Multibackend enviromnet Real-time status from different libraries in Multibackend enviromnet

Results
● Security and confidence building in partners

– In case of ‘Koha database’ call and ‘KohaILSDI’
approaches, partners need to share Koha database admin
credentials (or user having access to Koha database, not
even superlibrarian password will do);

● A bit risky for a partnerships based initiative like union
catalogue;

– In case of ‘KohaRest’ approach, partners need to share
only client id & client secret (with minimum privileges) for
OAuth2 protocol based access to Koha dataabse through
koha-rest-plugin;

● A revolutionary improvement in security over the
Gen I and Gen II approaches and can build necessary
confidence among partners;

Results
● Enhanced OPAC functionalities

– ‘Koha database’ call provides – ILS based login and can retrieve dataset
like ‘checked out items’, ‘Loan history’, ‘Holds & Recalls’ and ‘Fines’ from
the ILS dynamically; can see brief user profile but

● Can’t Place or Cancel holds in Multibackend driver mode;
● Can’t change/modify user profile;
●

– ‘KohaILSDI’ approach supports all the activities as supported by
‘Database call’ approach and additionally provides features like – Holds
placement, Recall, Profile update (password change option) but

● Holds cancellation is not allowed;
● Article request facility not available;

– ‘KohaRest’ driver apart from supporting all the features as available in
Gen I & Gen II drivers also extends supports for – Holds cancellation,
Extensive profile data and Storage Retrieval Requests but

● Bit slower in transferring datasets from ILS in comparison with Gen I &
Gen II drivers

● Password change option is not there like KohaILSDI.

KohaRest driver | Detail page KohaRest driver | Detail page

KohaILSDI driver | Detail page KohaILSDI driver | Detail page

Koha driver | Detail page Koha driver | Detail page

KohaRest is the champion but ….

A search involving documents from all Six libraries takes almost 30 seconds to upload real-time item-level status
for set 1 (20 retrieved records) for a total of 12 sets (236 retrieved records) but availability status in detail page is instantaneous.

A search involving documents from all Six libraries takes almost 30 seconds to upload real-time item-level status
for set 1 (20 retrieved records) for a total of 12 sets (236 retrieved records) but availability status in detail page is instantaneous.

Conclusion …..
● It is too early to conclude as KohaRest is only 3 months old but the conceptual

framework that supports REST based interaction between VuFind and Koha is brilliant;

● KohaRest is more secured approach in a multi ILS environment in comparison with
KohaILSDI and Koha drivers;

● KohaRest does not require additional configuration in Mysql/MariaDB when Koha
instances are in different machines, whereas KohaILSDI and Koha drivers need this
additional work;

● KohaRest is independent of structural changes in Koha side whereas KohaILSDI and
Koha drivers need adjustments with changes in Koha side (for example, in VuFind 4.1
KohaILSDI required major changes when Koha community decided to remove marcxml
out of the biblioitems table in Koha 17.05 – see https://github.com/vufind-org/vufind/pull/1007);

● REST endpoints at Koha side will be growing with the time (unlike fixed 25 parameters
in ILSDI) and more and more OPAC functionalities will be added in KohaRest driver in
future (you have already noticed the ‘article request’ option in KohaRest);

● At this point of time KohaRest driver is bit slower in comparison with KohaILSDI and
Koha drivers but I am sure it will be solved in the forthcoming version VuFind 7.2; and

● De-duplication and FRBRized display may be the next target for such a framework.

a Creative Commons Attribution-ShareAlike 3.0 Unported License.

Thank you...

Stay Safe

Parthasarathi Mukhopadhyay (psmukhopadhyay@gmail.com)

This work is licensed under

Special thanks to: Demian Katz and Ere Maijala for their help and guidance.Special thanks to: Demian Katz and Ere Maijala for their help and guidance.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61

