

Seite 1

PENETRATION TEST REPORT

VERSION 1.0 | August 16th, 2023

Closing Report for Universitätsbibliothek Leipzig
Beethovenstr. 6

04107 Leipzig

secuvera GmbH

Siedlerstraße 22-24

71126 Gäufelden

Author(s)

Timo Schäpe

Seite 2

TABLE OF CONTENTS

1. Summary ... 3

1.1. Source Code Analysis ... 3

2. General Information .. 5

2.1. Common Vulnerability Scoring System ... 5

2.2. Presentation ... 5

3. Source Code Analysis ... 7

3.1. Testing Methodology and Goal .. 7

3.2. Course of the Project and Results .. 9

3.2.1. Vulnerability Listing ... 9

S_01 PHP 7.4.1 Has Reached End of Life ... 9

S_02 Outdated Software Component in Use ... 10

S_03 Passwords Are Not Hashed by Default ... 11

S_04 Brute-Force Attack on Login Form Possible ... 12

3.2.2. Assignment of Vulnerabilities to the OWASP Top 10 .. 14

3.2.3. Informational Findings ... 14

H_01 Type Juggling Possible .. 14

H_02 No Password Policy by Default ... 15

H_03 Prototype Pollution Possible .. 15

4. Appendix A: Versions and Directories ... 16

4.1. List of Figures .. 16

4.2. List of Tables .. 16

5. Appendix B: Description of Security Level Evaluation ... 17

5.1. Security Level Evaluation during Source Code Analysis .. 17

Seite 3

1. SUMMARY

1.1. Source Code Analysis

In the period from July 7th to 18th, 2023, the source code of the VuFind® web application was analyzed

on behalf of the Universitätsbibliothek Leipzig (referred to as “customer” in the following) in a security

audit in the form of a static source code analysis. The goal of the audit was to identify vulnerabilities

in the source code.

The source code was first checked using the automated static source code analysis scanning tool

“Semgrep”1, and the results were verified manually. Additionally, manual tests were performed to

identify weaknesses in the source code. The VuFind® web application was also installed locally to

understand, check, and verify findings in the source code. Also, two scripts were written to help

verifying assumptions which were made based on findings in the source code.

The test was performed as a white-box test, meaning that the tester had the source code.

During the source code analysis, four vulnerabilities could be identified.

It was discovered that the web application could be set up to run with the outdated PHP version 7.4.1.

This version is no longer supported by the manufacturer (“end of life”). No more updates and, in

particular, no more security patches are provided for this version. The security risk of software that

is no longer supported must generally be considered critical, so this was assessed as a critical

severity vulnerability.

Not hashing passwords of users by default leads to a high severity vulnerability. Although the web

application supports hashing passwords, it is not enabled by default.

Another high severity vulnerability results from using an outdated version of the third-party library

Laminas-diactoros in version 2.17. A vulnerability is known for this version. Attackers can carry out

denial-of-service attacks.

The lack of protection against brute-force attacks in the login mask was rated as a medium severity

vulnerability. An attacker is thus able to try out any number of username and password combinations.

In addition, the following three informational findings were identified. No direct risks ensue from

these findings, which is why they are not considered to be vulnerabilities. However, the general

security level of the source code can be increased by addressing these findings.

The web application is not using a strict comparison to check the md5 sum of a file during the

upgrade. This could lead to type juggling.

A vulnerability without direct severity is caused by the fact that no requirements are specified by

default for the login password. Users can use very simple passwords like “a” or “123”, which can

facilitate brute-force attacks on the login.

The possibility of prototype polluting function was detected. By adding or modifying attributes of an

object prototype, it is possible to create attributes that exist on every object, or replace critical

attributes with malicious ones.

1 https://semgrep.dev/

https://semgrep.dev/

Seite 4

Table 1: Statistical Summary of Security Levels of all Vulnerabilities

Number of identified vulnerabilities with Severity “Critical” 1

Number of identified vulnerabilities with Severity “High” 2

Number of identified vulnerabilities with Severity “Medium” 1

Number of identified vulnerabilities with Severity “Low” 0

Number of identified vulnerabilities with no Severity 3

Total number of identified vulnerabilities 7

Overall, only a critical severity level can be attested to the web application, as one critical vulnerability

was found.

Seite 5

2. GENERAL INFORMATION

The test results are separated into different chapters. General remarks can be found in this chapter.

All results are valid for the described tests, software versions, and configuration only. New

vulnerabilities or vulnerabilities introduced due to changes in the code or applications cannot be

identified in advance. Therefore, conclusions to future robustness cannot be derived from the results

presented in this document. In case of major changes, retesting is recommended.

Tests were conducted with the effort defined by the project scope. This approach assures the best

test coverage possible. Naturally, with this testing methodology and the limited time, complete test

coverage is impossible.

2.1. Common Vulnerability Scoring System

The Common Vulnerability Scoring System (CVSS) is being used to evaluate risks of vulnerabilities

identified.2 CVSS is the leading industry standard for risk evaluation of vulnerabilities and was

developed by the Forum of Incident Response and Security Teams (FIRST).

In the field of IT security, the “defense in depth“ approach has become the standard. In all layers of

IT, all commercially viable security measures should therefore be taken. This leads to sustainable

resilience against attacks. For example, we are advising to use the recommendations for

cryptographic techniques of the German BSI and show differences to these recommendations, even

though no exploitable vulnerabilities might result from those differences. The CVSS score of such

findings is normally “none”.

For each vulnerability rating, the according vector string3 will also be provided. This will facilitate the

further processing of the base score determined by the tester within the scope of risk evaluation and

handling by the customer. The respectively determined base score represents the external tester’s

view of the test object. Using the CVSS environmental score, the values can be adapted by the

customer to the respective application’s context within the scope of the customer’s own risk

evaluation.

2.2. Presentation

The goal of the security audit as well as the steps taken to reach it are documented in chronological

order in separate chapters. This ensures the traceability of the drawn conclusions with regards to the

results.

All reports generated by tools used during the tests were verified and evaluated manually and

attached to this document. Findings listed in these but not within this document are either false

positives or have no relevance.

Further information on the identified vulnerabilities can be found in the tool-generated reports. To

offer a convenient overview of the vulnerabilities, no detailed information is listed in this document.

Each vulnerability and informational finding are initially described separately along with its possible

impact. Subsequently, an individual risk evaluation is given, as well as a recommended course of

action in order to remediate the vulnerability or informational finding. The listings also contain results

from manually conducted tests.

2 https://www.first.org/cvss/

3 https://www.first.org/cvss/specification-document#Vector-String

https://www.first.org/cvss/
https://www.first.org/cvss/specification-document#Vector-String

Seite 6

In order to easily reference individual vulnerabilities and informational findings, each of the findings

is given a unique identifier and labelled with a continuous index. The nomenclature is described in

the following:

• S_ vulnerabilities found during source code analysis.

Informational findings are not classified as vulnerabilities, because they do not pose a direct risk or

may only be a deviation from established security standards or best practices. The CVSS score of

informational findings is usually “none”, and they have no influence in a risk level evaluation. In this

report, they are listed using the following nomenclature:

• H_ informational findings during the penetration test.

Seite 7

3. SOURCE CODE ANALYSIS

3.1. Testing Methodology and Goal

In the period from July 7th to 18th, 2023, the source code of the VuFind® web application was analyzed

on behalf of the Universitätsbibliothek Leipzig in a security audit in the form of a static source code

analysis. The goal of the audit was to identify vulnerabilities in the source code.

The source code was first checked using the automated static source code analysis scanning tool

“Semgrep” and the results were verified manually. Furthermore, manual checks were performed to

be able to identify weaknesses in the source code. The VuFind® web application was also installed

locally to understand, check, and verify findings in the source code. Also, two scripts were written to

help verify assumptions which were made based on findings in the source code.

The following information was provided by the customer:

• VuFind 9.0.2;

• Git hash for this release: 203c4ad91ef0613d83dff1281cf4a7532d9c7bcd;

• directories that were not included:

o data;

o import;

o packages;

o solr;

o tests.

The test was performed as a white-box test, meaning that the tester had the source code.

The tests were carried out according to the penetration testing model of the German Federal Office

for Information Security (BSI).

Seite 8

Figure 1: Methodology according to the BSI Study “A Penetration Testing Model4”

 Penetration
Test

Criteria:

1. Information Base Black-Box White-Box

2. Aggressiveness
Passive/
Scanning

 Cautious Calculated Aggressive

3. Scope Full Limited Focused

4. Approach Covert/Stealthy Overt/Noisy

5. Technique
Network-

Based
 Other

Communication
 Physical

Access
 Social

Engineering

6. Starting Point Outside Inside

4
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Penetrationstest/penetrationst
est.html

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Penetrationstest/penetrationstest.html
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Studien/Penetrationstest/penetrationstest.html

Seite 9

3.2. Course of the Project and Results

All tests were performed as planned, following the methodology described in the previous chapter.

3.2.1. Vulnerability Listing

In order to increase readability and to avoid redundancies, every type of found vulnerability is

described in this chapter.

Note on vulnerability assessment: In order to be able to evaluate the vulnerabilities that were

identified during the source code analysis in a uniform manner, they are evaluated using the CVSS

metric. However, the metric is not fully mappable to vulnerabilities identified during the source code

analysis. For example, in some cases it is not possible to make an accurate statement about the

values for “Attack Complexity” or the “Privileges Required”, because in an SCA, the focus is on

weaknesses in the development and not on the exploitation of the resulting vulnerability. In these

cases, a “worst case” scenario is therefore assumed, and the vulnerability is assessed accordingly.

S_01 PHP 7.4.1 Has Reached End of Life

Description The minimal PHP version 7.4.1 is defined in the PHP package file composer.json.

This is an outdated version of the PHP and has passed its official end-of-life (EOL)

date and is accordingly no longer supported by the manufacturer. Also, various

vulnerabilities are known to this version, and because it reached EOL, security

updates are no longer released.

Effect The outdated PHP version is vulnerable to various vulnerabilities that, for

example, an attacker can exploit to cause a denial of service.

Additional info The support period for PHP 7.4.1 ended 08/22/2022.

OWASP Top 10 2021 A06 – Vulnerable and Outdated Components

Remediation Increase the PHP version to a current version that is still actively supplied with

security updates. For the long-term elimination of the vulnerability, regular

checks should be performed to determine whether the software in use is still

supported. For this purpose, the announcements published by the respective

manufacturer should be subscribed to.

References https://www.php.net/supported-versions.php

https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/

Risk Evaluation Critical

In the case of newly emerging vulnerabilities, there is usually no mapping by the

manufacturer as to whether a vulnerability also exists in the software versions

that are no longer supported.

It is therefore assumed in the assessment that non-publicly known vulnerabilities

exist and could be exploited that affect this version and for which no update

exists.

There is no assessment based on the CVSS score, but the severity is classified

as critical based on the behavior described above, as the security risk for

software that is no longer supported cannot be assessed.

https://www.php.net/supported-versions.php
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/

Seite 10

S_02 Outdated Software Component in Use

Description During the audit, an outdated version of the laminas-diactoros library was found.

In the file composer.json the version of the library is defined as version 2.17, but

there is a known vulnerability to this version.

Effect Laminas-diactoros provides PSR HTTP Message implementations. In version

2.17, an attacker who creates HTTP requests or responses using laminas-

diactoros, when providing a newline at the start or end of a header key or value,

can cause an invalid message. This can lead to denial of service or application

errors.

Additional info Due to the limited amount of time during this audit it was not possible to check

all third-party libraries in use. Choosing laminas-diactoros was just a random

sample out of the list of dependencies.

OWASP Top 10 2021 A06 – Vulnerable and Outdated Components

Remediation Increase the laminas-diactoros version to a current version with security updates.

For the long-term elimination of the vulnerability, regular checks should be made

to determine whether the software in use has security vulnerabilities and fixes.

For this purpose, the announcements published by the respective manufacturer

should be subscribed to.

References https://getlaminas.org/security/advisory/LP-2023-01

https://nvd.nist.gov/vuln/detail/CVE-2023-29530

https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/

Severity Evaluation High

Table 2: Severity Evaluation Vulnerability S_02

Severity Evaluation according to CVSS v3.1 (Base Score)

Metric Rating Explanatory Statement

Attack Vector
(AV)

Network A vulnerability exploitable with network access means the
vulnerable component is bound to the network stack, and the
attacker’s path is through the network layer.

Attack
Complexity (AC)

Low Specialized access conditions or extenuating circumstances do
not exist. An attacker can expect repeatable success against the
vulnerable component.

Privileges
Required (PR)

None The attacker is unauthorized prior to the attack and therefore
does not require any access to settings or files to carry out an
attack.

User Interaction
(UI)

None The vulnerable code can be exploited without interaction from
any user.

Scope (S) Unchanged An exploited vulnerability can only affect resources managed by
the same authority. In this case, the vulnerable component and
the impacted component are the same.

Confidentiality
Impact (C)

None There is no loss of confidentiality within the impacted
component.

https://getlaminas.org/security/advisory/LP-2023-01
https://nvd.nist.gov/vuln/detail/CVE-2023-29530
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/

Seite 11

Severity Evaluation according to CVSS v3.1 (Base Score)

Metric Rating Explanatory Statement

Integrity Impact
(I)

None There is no loss of integrity within the impacted component.

Availability
Impact (A)

High There is total loss of availability, resulting in the attacker being
able to fully deny access to resources in the impacted compo-
nent.

Score High 7,5 (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H)

S_03 Passwords Are Not Hashed by Default

Description The default configuration of VuFind® does not enforce hashing of passwords in

the database. It requires a manual adjustment that passwords are hashed.

Effect In general, plaintext passwords impose a risk for a user because of password

reuse attacks. Additionally, it may facilitate privilege escalation attacks. Hashing

passwords is considered as state of the art and a general requirement for storing

passwords in databases. Because of this, it may also be a loss of reputation for

the vendor of software in case of an incident.

Additional info Although there is the possibility to enable password hashing in the file config.ini

manually, it is considered insecure to not enable it by default.

Using the Install/Home page to finish a VuFind® installation/update will enable

hashing and also encrypt all old plaintext passwords by pressing the button to

fix the security issue. However, a quick research showed that 14 of 172 listed

VuFind® instances5 out there have not fixed the security issue yet (tested on

07/18/2023).

The vulnerability assessment with CVSS rating in the table below considers a

generic scenario that an attacker gains access to the database. The attacker might

be an administrator with read-only access (insider attack) or an attacker

exploiting an SQL injection. These are just examples for demonstration.

OWASP Top 10 2021 A05 – Security Misconfiguration

Remediation Enabling the password hashing by default will solve this vulnerability and is best

practice. Password hashing should also be mandatory and the config flag for

enabling/disabling the hashing should be removed.

References https://owasp.org/www-community/vulnerabilities/Password_Plaintext_Storage

https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_She

et.html

Severity Evaluation High

5 https://vufind.org/wiki/community:installations

https://owasp.org/www-community/vulnerabilities/Password_Plaintext_Storage
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://vufind.org/wiki/community:installations

Seite 12

Table 3: Severity Evaluation Vulnerability S_03

Severity Evaluation according to CVSS v3.1 (Base Score)

Metric Rating Explanatory Statement

Attack Vector
(AV)

Network A vulnerability exploitable with network access means the
vulnerable component is bound to the network stack, and the
attacker’s path is through the network layer.

Attack
Complexity (AC)

Low An attacker can simply use the found username/password
combinations if they gain access to the stored plaintext
passwords in the database through another vulnerability, e.g.
SQL injection.

Privileges
Required (PR)

None The attacker is unauthorized prior to the attack and therefore
does not require any access to settings or files to carry out an
attack.

User Interaction
(UI)

None The vulnerable code can be exploited without interaction from
any user.

Scope (S) Unchanged An exploited vulnerability can only affect resources managed by
the same authority. In this case, the vulnerable component and
the impacted component are the same.

Confidentiality
Impact (C)

High Access to restricted information is obtained, the disclosed
information presents a direct, serious impact.

Integrity Impact
(I)

None There is no loss of integrity within the impacted component.

Availability
Impact (A)

None There is no impact to availability within the impacted compo-
nent.

Score High 7.5 (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N)

S_04 Brute-Force Attack on Login Form Possible

Description The web application does not provide protection against brute-force attacks

when the database authentication is used. An attacker is thus able to try any

number of username and password combinations.

Effect An attacker would be able to guess the password to a known user name by trial

and error and thus gain access to the user’s account.

Additional info To verify the assumption that no rate limiting for the login page is implemented,

a python script was written and started to stress the local installed VuFind®

instance.

In combination with H_02 No Password Policy by Default, a brute-force attack is

likely to be successful.

OWASP Top 10 2021 A07 – Identification and Authentication Failures

Remediation Repeated invocation of the login function should be limited. For example, the use

of so-called tar pits or CAPTCHAs would be possible. It would also be

Seite 13

conceivable to temporarily block accounts after several failed attempts (e.g. ten

attempts).

References https://owasp.org/www-community/controls/Blocking_Brute_Force_Attacks

https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.ht

ml#login-throttling

Severity Evaluation Medium

Table 4: Severity Evaluation Vulnerability S_04

Severity Evaluation according to CVSS v3.1 (Base Score)

Metric Rating Explanatory Statement

Attack Vector
(AV)

Network A vulnerability exploitable with network access means the
vulnerable component is bound to the network stack, and the
attacker’s path is through the network layer.

Attack
Complexity (AC)

Low Specialized access conditions or extenuating circumstances do
not exist. An attacker can expect repeatable success against the
vulnerable component.

Privileges
Required (PR)

None The attacker is unauthorized prior to the attack and therefore
does not require any access to settings or files to carry out an
attack.

User Interaction
(UI)

None The vulnerable code can be exploited without interaction from
any user.

Scope (S) Unchanged An exploited vulnerability can only affect resources managed by
the same authority. In this case, the vulnerable component and
the impacted component are the same.

Confidentiality
Impact (C)

Low There is some loss of confidentiality. After a successful attack,
the attacker knows a user’s password and can view the user’s
data.

Integrity Impact
(I)

None There is no loss of integrity within the impacted component.

Availability
Impact (A)

None There is no impact to availability within the impacted compo-
nent.

Score Medium 5,3 (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:L/I:N/A:N)

https://owasp.org/www-community/controls/Blocking_Brute_Force_Attacks
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html#login-throttling
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html#login-throttling

Seite 14

3.2.2. Assignment of Vulnerabilities to the OWASP Top 10

In the following, the result of the source code analysis is assigned to the OWASP Top 10 categories

presented in the description of the approach.

Table 5: Result Referencing Source Code Analysis on OWASP Top 10 Risks

Risk Fail/Pass

2021 A01 – Broken Access Control Pass

2021 A02 – Cryptographic Failures Pass

2021 A03 – Injection Pass

2021 A04 – Insecure Design Pass

2021 A05 – Security Misconfiguration Fail

2021 A06 – Vulnerable and Outdated Components Fail

2021 A07 – Identification and Authentication Failures Fail

2021 A08 – Software and Data Integrity Failures Pass

2021 A09 – Security Logging and Monitoring Failures Pass

2021 A10 – Server-Side Request Forgery Pass

3.2.3. Informational Findings

During the audit, some problems were identified that cannot be clearly classified as vulnerabilities

since they pose no direct risk. However, the general security level of the source code can be

increased by addressing these findings.

H_01 Type Juggling Possible

Description PHP is a loosely typed language, which means it tries to predict the program-

mer’s intent and automatically converts variables to different types whenever it

seems necessary. For example, a string containing only numbers can be treated

as an integer or a float. However, this automatic conversion (or type juggling) can

lead to unexpected results, especially when comparing variables using the ‘==’

operator, which only checks for value equality (loose comparison), not type and

value equality (strict comparison).

Effect PHP type juggling vulnerabilities arise when loose comparison (== or !=) is

employed instead of strict comparison (=== or !==) in an area where the

attacker can control one of the variables being compared. This vulnerability can

result in the application returning an unintended answer to the true or false

statement, and may lead to unexpected behavior of the application.

Recommendation Make sure comparisons involving md5 values are strict (use === not ==) to

avoid type juggling issues.

References https://www.php.net/manual/en/types.comparisons.php

https://www.php.net/manual/en/language.types.type-juggling.php

https://owasp.org/www-pdf-archive/PHPMagicTricks-TypeJuggling.pdf

https://www.php.net/manual/en/types.comparisons.php
https://www.php.net/manual/en/language.types.type-juggling.php
https://owasp.org/www-pdf-archive/PHPMagicTricks-TypeJuggling.pdf

Seite 15

H_02 No Password Policy by Default

Description The web application does not implement any policy for passwords by default, so

users can arbitrarily choose simple passwords.

Effect It is much easier for an attacker to guess passwords of users if they could choose

simple passwords. Should an attacker come into possession of valid credentials,

they could retrieve and modify arbitrary files on behalf of the user.

OWASP Top 10 2021 A07 – Identification and Authentication Failures

Recommendation A more suitable and restrictive password policy should be created and

technically implemented. No “universal” policy can be recommended here, but a

policy corresponding to the data handled and thus the necessary security level

must be defined. Also, this policy should be enabled by default.

References

https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.ht

ml#implement-proper-password-strength-controls

H_03 Prototype Pollution Possible

Description By adding or modifying attributes of a JavaScript object prototype, it is possible

to create attributes that exist on every object, or replace critical attributes with

malicious ones. This can be problematic if the web application depends on

existence or non-existence of certain attributes, or uses pre-defined attributes of

object prototype (such as hasOwnProperty, toString or valueOf).

Effect Although prototype pollution is often unexploitable as a standalone vulnerability,

it lets an attacker control properties of objects that would otherwise be

inaccessible. If the application subsequently handles an attacker-controlled

property in an unsafe way, this can potentially be chained with other

vulnerabilities.

Recommendation Like many other security vulnerabilities, attackers exploit prototype pollution

bugs through user input in web applications and sending their malicious code in

text fields, headers, and files. One popular kind of defense is to create blocklists

where developers remove risky fields from input strings. Checking the user input

against those lists could be the first step to mitigate this issue.

Other possible mitigations might be: freezing the object prototype, using an

object without prototypes (via Object.create(null)), blocking modifications of

attributes that resolve to object prototype, using Map instead of object.

References https://portswigger.net/web-security/prototype-pollution

https://cheatsheetseries.owasp.org/cheatsheets/Prototype_Pollution_Prevention

_Cheat_Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html%23implement-proper-password-strength-controls
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html%23implement-proper-password-strength-controls
https://portswigger.net/web-security/prototype-pollution
https://cheatsheetseries.owasp.org/cheatsheets/Prototype_Pollution_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Prototype_Pollution_Prevention_Cheat_Sheet.html

Seite 16

4. APPENDIX A: VERSIONS AND DIRECTORIES

Table 6: Version History

Version Date Author Changes

1.0 08/16/2023 Ruben Konrad, secuvera Final Report

0.9 07/26/2023 Ruben Konrad, secuvera Report finalization, version to be

harmonized with the customer

0.8 07/26/2023 Feuersänger, secuvera Proofreading

0.7 07/24/2023 Ruben Konrad, secuvera Approval of document amendments

0.6 07/21/2023 Timo Schäpe, secuvera Worked in quality assurance review

amendments

0.5 07/20/2023 Ruben Konrad, secuvera Technical quality assurance review

0.4 07/20/2023 Timo Schäpe, secuvera Finalized report

0.3 07/20/2023 Timo Schäpe, secuvera Documented summary

0.2 07/19/2023 Timo Schäpe, secuvera Documented general information source

code analysis

0.1 07/19/2023 Timo Schäpe, secuvera Document initialization

4.1. List of Figures

Figure 1: Methodology according to the BSI Study “A Penetration Testing Model” 8

4.2. List of Tables

Table 1: Statistical Summary of Security Levels of all Vulnerabilities .. 4

Table 2: Severity Evaluation Vulnerability S_02... 10

Table 3: Severity Evaluation Vulnerability S_03... 12

Table 4: Severity Evaluation Vulnerability S_04... 13

Table 5: Result Referencing Source Code Analysis on OWASP Top 10 Risks 14

Table 6: Version History .. 16

Table 7: Security Level Evaluation for Source Code Analysis .. 17

Seite 17

5. APPENDIX B: DESCRIPTION OF SECURITY LEVEL EVALUATION

5.1. Security Level Evaluation during Source Code Analysis

The security level of the source code is calculated according to the identified vulnerabilities and their

severities.

Table 7: Security Level Evaluation for Source Code Analysis

Security Level Criteria for The Source Code Security Level

Very High Is chosen if no vulnerability was identified.

High Is chosen if only vulnerabilities with low severity were identified.

Medium Is chosen if only vulnerabilities with low and medium severity were identified.

Low Is chosen if any vulnerability with high severity was identified.

Critical Is chosen if any vulnerabilities with critical severity was identified.

Please note: Since informational findings do not pose a direct risk, they are not considered when

calculating the security level.

